Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Trends Pharmacol Sci ; 45(3): 225-242, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38402076

RESUMO

High levels of pathogenic mitochondrial DNA (mtDNA) variants lead to severe genetic diseases, and the accumulation of such mutants may also contribute to common disorders. Thus, selecting against these mutants is a major goal in mitochondrial medicine. Although mutant mtDNA can drift randomly, mounting evidence indicates that active forces play a role in the selection for and against mtDNA variants. The underlying mechanisms are beginning to be clarified, and recent studies suggest that metabolic cues, including fuel availability, contribute to shaping mtDNA heteroplasmy. In the context of pathological mtDNAs, remodeling of nutrient metabolism supports mitochondria with deleterious mtDNAs and enables them to outcompete functional variants owing to a replicative advantage. The elevated nutrient requirement represents a mutant Achilles' heel because small molecules that restrict nutrient consumption or interfere with nutrient sensing can purge cells of deleterious mtDNAs and restore mitochondrial respiration. These advances herald the dawn of a new era of small-molecule therapies to counteract pathological mtDNAs.


Assuntos
DNA Mitocondrial , Mitocôndrias , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo
2.
Brain ; 147(5): 1899-1913, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38242545

RESUMO

Aberrant cholesterol metabolism causes neurological disease and neurodegeneration, and mitochondria have been linked to perturbed cholesterol homeostasis via the study of pathological mutations in the ATAD3 gene cluster. However, whether the cholesterol changes were compensatory or contributory to the disorder was unclear, and the effects on cell membranes and the wider cell were also unknown. Using patient-derived cells, we show that cholesterol perturbation is a conserved feature of pathological ATAD3 variants that is accompanied by an expanded lysosome population containing membrane whorls characteristic of lysosomal storage diseases. Lysosomes are also more numerous in Drosophila neural progenitor cells expressing mutant Atad3, which exhibit abundant membrane-bound cholesterol aggregates, many of which co-localize with lysosomes. By subjecting the Drosophila Atad3 mutant to nutrient restriction and cholesterol supplementation, we show that the mutant displays heightened cholesterol dependence. Collectively, these findings suggest that elevated cholesterol enhances tolerance to pathological ATAD3 variants; however, this comes at the cost of inducing cholesterol aggregation in membranes, which lysosomal clearance only partly mitigates.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Colesterol , Lisossomos , Proteínas de Membrana , Mutação , Animais , Colesterol/metabolismo , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Drosophila , Membrana Celular/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37609320

RESUMO

The presence of somatic mutations, including copy number variants (CNVs), in the brain is well recognized. Comprehensive study requires single-cell whole genome amplification, with several methods available, prior to sequencing. We compared PicoPLEX with two recent adaptations of multiple displacement amplification (MDA): primary template-directed amplification (PTA) and droplet MDA, across 93 human brain cortical nuclei. We demonstrated different properties for each, with PTA providing the broadest amplification, PicoPLEX the most even, and distinct chimeric profiles. Furthermore, we performed CNV calling on two brains with multiple system atrophy and one control brain using different reference genomes. We found that 38% of brain cells have at least one Mb-scale CNV, with some supported by bulk sequencing or single-cells from other brain regions. Our study highlights the importance of selecting whole genome amplification method and reference genome for CNV calling, while supporting the existence of somatic CNVs in healthy and diseased human brain.

4.
Front Neurosci ; 17: 1096865, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051148

RESUMO

Introduction: Transcutaneous auricular vagus nerve stimulation (taVNS) is a neuromodulatory technique that stimulates the auricular branch of the vagus nerve. The modulation of the locus coeruleus-norepinephrine (LC-NE) network is one of the potential working mechanisms of this method. Our aims were 1-to investigate if short and single applications of taVNS can modulate the P300 cognitive event-related potential (ERP) as an indirect marker that reflects NE brain activation under control of the LC, and 2-to evaluate the duration of these changes. Methods: 20 healthy volunteers executed an auditory oddball paradigm to obtain P300 and reaction time (RT) values. Then a 7 min active or sham taVNS period was initiated and simultaneously a new P300 paradigm was performed. We successively repeated the paradigm on 4 occasions with different time intervals up to 56 min after the stimulation onset. Results: During active taVNS an immediate and significant effect of increasing the amplitude and reducing the latency of P300, as well as a shortening in the RT was observed. This effect was prolonged in time up to 28 min. The values then returned to pre-stimulation levels. Sham stimulation did not generate changes. Discussion: Our results, demonstrate differential facilitating effects in a concrete time window after taVNS. Literature about the modulatory effect of taVNS over P300 ERP shows a wide spread of results. There is not a standardized system for taVNS and currently the great heterogeneity of stimulation approaches concerning targets and parameters, make it difficult to obtain conclusions about this relationship. Our study was designed optimizing several stimulation settings, such as a customized earbud stimulator, enlarged stimulating surface, simultaneous stimulation over the cymba and cavum conchae, a Delayed Biphasic Pulse Burst and current controlled stimulation that adjusted the output voltage and guaranteed the administration of a preset electrical dose. Under our stimulation conditions, targeting vagal nerve fibers via taVNS modulates the P300 in healthy participants. The optimal settings of modulatory function of taVNS on P300, and their interdependency is insufficiently studied in the literature, but our data provides several easily optimizable parameters, that will produce more robust results in future.

5.
Neural Regen Res ; 18(9): 1961-1967, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36926720

RESUMO

The inflammatory response plays an important role in neuroprotection and regeneration after ischemic insult. The use of non-steroidal anti-inflammatory drugs has been a matter of debate as to whether they have beneficial or detrimental effects. In this context, the effects of the anti-inflammatory agent meloxicam have been scarcely documented after stroke, but its ability to inhibit both cyclooxygenase isoforms (1 and 2) could be a promising strategy to modulate post-ischemic inflammation. This study analyzed the effect of meloxicam in a transient focal cerebral ischemia model in rats, measuring its neuroprotective effect after 48 hours and 7 days of reperfusion and the effects of the treatment on the glial scar and regenerative events such as the generation of new progenitors in the subventricular zone and axonal sprouting at the edge of the damaged area. We show that meloxicam's neuroprotective effects remained after 7 days of reperfusion even if its administration was restricted to the two first days after ischemia. Moreover, meloxicam treatment modulated glial scar reactivity, which matched with an increase in axonal sprouting. However, this treatment decreased the formation of neuronal progenitor cells. This study discusses the dual role of anti-inflammatory treatments after stroke and encourages the careful analysis of both the neuroprotective and the regenerative effects in preclinical studies.

6.
Mov Disord ; 38(2): 338-342, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448620

RESUMO

BACKGROUND: Somatic α-synuclein (SNCA) copy number variants (CNVs, specifically gains) occur in multiple system atrophy (MSA) and Parkinson's disease brains. OBJECTIVE: The aim was to compare somatic SNCA CNVs in MSA subtypes (striatonigral degeneration [SND] and olivopontocerebellar atrophy [OPCA]) and correlate with inclusions. METHODS: We combined fluorescent in situ hybridization with immunofluorescence for α-synuclein and in some cases oligodendrocyte marker tubulin polymerization promoting protein (TPPP). RESULTS: We analyzed one to three brain regions from 24 MSA cases (13 SND, 11 OPCA). In a region preferentially affected in one subtype (putamen in SND, cerebellum in OPCA), mosaicism was higher in that subtype, and cells with CNVs were 4.2 times more likely to have inclusions. In the substantia nigra, nonpigmented cells with CNVs and TPPP were about six times more likely to have inclusions. CONCLUSIONS: The correlation between SNCA CNVs and pathology (at a regional level) and inclusions (at a single-cell level) suggests a role for somatic SNCA CNVs in MSA pathogenesis. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Atrofias Olivopontocerebelares , Humanos , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/metabolismo , Variações do Número de Cópias de DNA , Hibridização in Situ Fluorescente
7.
Methods Mol Biol ; 2561: 205-230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36399272

RESUMO

The evidence for a role of somatic mutations, including copy-number variants (CNVs), in neurodegeneration has increased in the last decade. However, the understanding of the types and origins of these mutations, and their exact contributions to disease onset and progression, is still in its infancy. The use of single-cell (or nuclear) whole-genome sequencing (scWGS) has emerged as a powerful tool to answer these questions. In the present chapter, we provide laboratory and bioinformatic protocols used successfully in our lab to detect megabase-scale CNVs in single cells from multiple system atrophy (MSA) human postmortem brains, using immunolabeling prior to selection of nuclei for whole-genome amplification (WGA). We also present an unpublished comparison of scWGS generated from the same control substantia nigra (SN) sample, using the latest versions of popular WGA chemistries, MDA and PicoPLEX. We have used this protocol to focus on brain cell types most relevant to synucleinopathies (dopaminergic [DA] neurons in Parkinson's disease [PD] and oligodendrocytes in MSA), but it can be applied to any tissue and/or cell type with appropriate markers.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Humanos , Variações do Número de Cópias de DNA , Sequenciamento Completo do Genoma , Encéfalo/metabolismo , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
8.
Cells ; 11(7)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406633

RESUMO

In view of the proven link between adult hippocampal neurogenesis (AHN) and learning and memory impairment, we generated a straightforward adult neurogenesis in vitro model to recapitulate DNA methylation marks in the context of Alzheimer's disease (AD). Neural progenitor cells (NPCs) were differentiated for 29 days and Aß peptide 1-42 was added. mRNA expression of Neuronal Differentiation 1 (NEUROD1), Neural Cell Adhesion Molecule 1 (NCAM1), Tubulin Beta 3 Class III (TUBB3), RNA Binding Fox-1 Homolog 3 (RBFOX3), Calbindin 1 (CALB1), and Glial Fibrillary Acidic Protein (GFAP) was determined by RT-qPCR to characterize the culture and framed within the multistep process of AHN. Hippocampal DNA methylation marks previously identified in Contactin-Associated Protein 1 (CNTNAP1), SEPT5-GP1BB Readthrough (SEPT5-GP1BB), T-Box Transcription Factor 5 (TBX5), and Nucleoredoxin (NXN) genes were profiled by bisulfite pyrosequencing or bisulfite cloning sequencing; mRNA expression was also measured. NXN outlined a peak of DNA methylation overlapping type 3 neuroblasts. Aß-treated NPCs showed transient decreases of mRNA expression for SEPT5-GP1BB and NXN on day 9 or 19 and an increase in DNA methylation on day 29 for NXN. NXN and SEPT5-GP1BB may reflect alterations detected in the brain of AD human patients, broadening our understanding of this disease.


Assuntos
Doença de Alzheimer , Epigênese Genética , Oxirredutases , Adulto , Doença de Alzheimer/genética , Humanos , Neurogênese/genética , Oxirredutases/genética , RNA Mensageiro
9.
Sci Rep ; 12(1): 6890, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35478201

RESUMO

2-Deoxy-D-glucose (2DG) has recently received emergency approval for the treatment of COVID-19 in India, after a successful clinical trial. SARS-CoV-2 infection of cultured cells is accompanied by elevated glycolysis and decreased mitochondrial function, whereas 2DG represses glycolysis and stimulates respiration, and restricts viral replication. While 2DG has pleiotropic effects on cell metabolism in cultured cells it is not known which of these manifests in vivo. On the other hand, it is known that 2DG given continuously can have severe detrimental effects on the rodent heart. Here, we show that the principal effect of an extended, intermittent 2DG treatment on mice is to augment the mitochondrial respiratory chain proteome in the heart; importantly, this occurs without vacuolization, hypertrophy or fibrosis. The increase in the heart respiratory chain proteome suggests an increase in mitochondrial oxidative capacity, which could compensate for the energy deficit caused by the inhibition of glycolysis. Thus, 2DG in the murine heart appears to induce a metabolic configuration that is the opposite of SARS-CoV-2 infected cells, which could explain the compound's ability to restrict the propagation of the virus to the benefit of patients with COVID-19 disease.


Assuntos
Tratamento Farmacológico da COVID-19 , Glucose , Animais , Desoxiglucose/farmacologia , Transporte de Elétrons , Glucose/metabolismo , Humanos , Camundongos , Proteoma/metabolismo , SARS-CoV-2
11.
Nat Commun ; 12(1): 6997, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873176

RESUMO

Pathological variants of human mitochondrial DNA (mtDNA) typically co-exist with wild-type molecules, but the factors driving the selection of each are not understood. Because mitochondrial fitness does not favour the propagation of functional mtDNAs in disease states, we sought to create conditions where it would be advantageous. Glucose and glutamine consumption are increased in mtDNA dysfunction, and so we targeted the use of both in cells carrying the pathogenic m.3243A>G variant with 2-Deoxy-D-glucose (2DG), or the related 5-thioglucose. Here, we show that both compounds selected wild-type over mutant mtDNA, restoring mtDNA expression and respiration. Mechanistically, 2DG selectively inhibits the replication of mutant mtDNA; and glutamine is the key target metabolite, as its withdrawal, too, suppresses mtDNA synthesis in mutant cells. Additionally, by restricting glucose utilization, 2DG supports functional mtDNAs, as glucose-fuelled respiration is critical for mtDNA replication in control cells, when glucose and glutamine are scarce. Hence, we demonstrate that mitochondrial fitness dictates metabolite preference for mtDNA replication; consequently, interventions that restrict metabolite availability can suppress pathological mtDNAs, by coupling mitochondrial fitness and replication.


Assuntos
Replicação do DNA/efeitos dos fármacos , DNA Mitocondrial/genética , Desoxiglucose/farmacologia , Mitocôndrias/efeitos dos fármacos , Mutação Puntual , Células A549 , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Células Cultivadas , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glucose/análogos & derivados , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos
12.
Brain Sci ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070012

RESUMO

Adult neurogenesis was one of the most important discoveries of the last century, helping us to better understand brain function. Researchers recently discovered that microglia play an important role in this process. However, various questions remain concerning where, at what stage, and what types of microglia participate. In this review, we demonstrate that certain pools of microglia are determinant cells in different phases of the generation of new neurons. This sheds light on how cells cooperate in order to fine tune brain organization. It also provides us with a better understanding of distinct neuronal pathologies.

13.
Mol Neurobiol ; 58(4): 1404-1417, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33184783

RESUMO

Stroke is one of the main causes of death and disability worldwide. Ischemic stroke results in unfolded/misfolded protein accumulation in endoplasmic reticulum (ER), a condition known as ER stress. We hypothesized that previously reported neuroprotection of celecoxib, a selective inhibitor of cyclooxygenase-2, in transient middle cerebral artery occlusion (tMCAO) model, relies on the ER stress decrease. To probe this hypothesis, Sprague-Dawley rats were subjected to 1 h of tMCAO and treated with celecoxib or vehicle 1 and 24 h after ischemia. Protein and mRNA levels of the main hallmarks of ER stress, unfolded protein response (UPR) activation, UPR-induced cell death, and ubiquitin proteasome system (UPS) and autophagy, the main protein degradation pathways, were measured at 12 and 48 h of reperfusion. Celecoxib treatment decreased polyubiquitinated protein load and ER stress marker expression such as glucose-related protein 78 (GRP78), C/EBP (CCAAT/enhancer-binding protein) homologous protein (CHOP), and caspase 12 after 48 h of reperfusion. Regarding the UPR activation, celecoxib promoted inositol-requiring enzyme 1 (IRE1) pathway instead of double-stranded RNA-activated protein kinase-like ER kinase (PERK) pathway. Furthermore, celecoxib treatment increased proteasome catalytic subunits transcript levels and decreased p62 protein levels, while the microtubule-associated protein 1 light chain 3 (LC3B) II/I ratio remained unchanged. Thus, the ability of celecoxib treatment on reducing the ER stress correlates with the enhancement of IRE1-UPR pathway and UPS degradation. These data support the ability of anti-inflammatory therapy in modulating ER stress and reveal the IRE1 pathway as a promising therapeutic target in stroke therapy.Graphical abstract.


Assuntos
Celecoxib/farmacologia , Infarto da Artéria Cerebral Média/patologia , Neuroproteção , Complexo de Endopeptidases do Proteassoma/metabolismo , Resposta a Proteínas não Dobradas , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Proteínas de Choque Térmico/metabolismo , Infarto da Artéria Cerebral Média/complicações , Masculino , Complexos Multienzimáticos/metabolismo , Neuroproteção/efeitos dos fármacos , Poliubiquitina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Proteicas/metabolismo , Proteólise/efeitos dos fármacos , Ratos Sprague-Dawley , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/metabolismo
14.
Acta Neuropathol Commun ; 7(1): 219, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870437

RESUMO

Synucleinopathies are mostly sporadic neurodegenerative disorders of partly unexplained aetiology, and include Parkinson's disease (PD) and multiple system atrophy (MSA). We have further investigated our recent finding of somatic SNCA (α-synuclein) copy number variants (CNVs, specifically gains) in synucleinopathies, using Fluorescent in-situ Hybridisation for SNCA, and single-cell whole genome sequencing for the first time in a synucleinopathy. In the cingulate cortex, mosaicism levels for SNCA gains were higher in MSA and PD than controls in neurons (> 2% in both diseases), and for MSA also in non-neurons. In MSA substantia nigra (SN), we noted SNCA gains in > 3% of dopaminergic (DA) neurons (identified by neuromelanin) and neuromelanin-negative cells, including olig2-positive oligodendroglia. Cells with CNVs were more likely to have α-synuclein inclusions, in a pattern corresponding to cell categories mostly relevant to the disease: DA neurons in Lewy-body cases, and other cells in the striatonigral degeneration-dominant MSA variant (MSA-SND). Higher mosaicism levels in SN neuromelanin-negative cells may correlate with younger onset in typical MSA-SND, and in cingulate neurons with younger death in PD. Larger sample sizes will, however, be required to confirm these putative findings. We obtained genome-wide somatic CNV profiles from 169 cells from the substantia nigra of two MSA cases, and pons and putamen of one. These showed somatic CNVs in ~ 30% of cells, with clonality and origins in segmental duplications for some. CNVs had distinct profiles based on cell type, with neurons having a mix of gains and losses, and other cells having almost exclusively gains, although control data sets will be required to determine possible disease relevance. We propose that somatic SNCA CNVs may contribute to the aetiology and pathogenesis of synucleinopathies, and that genome-wide somatic CNVs in MSA brain merit further study.


Assuntos
Encéfalo/metabolismo , Variações do Número de Cópias de DNA , Atrofia de Múltiplos Sistemas/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , Giro do Cíngulo/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Análise de Célula Única
15.
J Neurochem ; 151(6): 777-794, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31165478

RESUMO

Ischemic stroke is one of the most important causes of death and disability worldwide. Subroutines underlying cell death after stroke are largely unknown despite their importance in the design of novel therapies for this pathology. Necroptosis, a recently described form of regulated cell death, has been related with inflammation and, in some models, with endoplasmic reticulum (ER) stress. We hypothesize that alleviation of ER stress following a salubrinal treatment will reduce the ischemic-dependent necroptosis. To probe the hypothesis, we measured, at 48 and 72 h after transient global cerebral ischemia in rat, in cerebral cortex and cornu ammonis 1, the main hallmarks of necroptosis: mRNA levels and phosphorylation of mixed lineage kinase domain like pseudokinase as well as receptor interacting serine/threonine protein kinase 3, along the years 2017-2018. Selective neuronal loss after 7 days of the ischemic insult, and other markers related with the inflammatory response were also measured. This study shows that necroptosis in cerebral cortex can be detected after 72 h of the insult and seems to be elicited before 48 h of reperfusion. The type of necroptosis here observed seems to be tumor necrosis factor receptor 1 independent. Necroptotic response is less evident in the cornu ammonis 1 hippocampal area than in cerebral cortex. The treatment with salubrinal administered 1 and 24 h after the ischemia, decreased the necroptotic marker levels and reduced the areas of selective neuronal loss, supporting the presence of ischemic-dependent necroptosis, and the notion that ER stress is involved in the necroptotic response. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Cinamatos/uso terapêutico , Modelos Animais de Doenças , Necroptose/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Tioureia/análogos & derivados , Animais , Isquemia Encefálica/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Cinamatos/farmacologia , Masculino , Necroptose/fisiologia , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Tioureia/farmacologia , Tioureia/uso terapêutico
16.
J Cell Physiol ; 234(6): 9592-9604, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30317637

RESUMO

Brain-derived neurotrophic factor (BDNF) is considered as a putative therapeutic agent against stroke. Since BDNF role on oxidative stress is uncertain, we have studied this role in a rat brain slice ischemia model, which allows BDNF reaching the neural parenchyma. Hippocampal and cerebral cortex slices were subjected to oxygen and glucose deprivation (OGD) and then returned to normoxic conditions (reperfusion-like, RL). OGD/RL increased a number of parameters mirroring oxidative stress in the hippocampus that were reduced by the BDNF presence. BDNF also reduced the OGD/RL-increased activity in a number of antioxidant enzymes in the hippocampus but no effects were observed in the cerebral cortex. In general, we conclude that alleviation of oxidative stress by BDNF in OGD/RL-exposed slices relies on decreasing cPLA2 activity, rather than modifying antioxidant enzyme activities. Moreover, a role for the oxidative stress in the differential ischemic vulnerability of cerebral cortex and hippocampus is also supported.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Encéfalo/patologia , Glucose/deficiência , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/toxicidade , Animais , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citosol/enzimologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , NADPH Oxidases/metabolismo , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reperfusão , Transcrição Gênica/efeitos dos fármacos
17.
J Pharmacol Exp Ther ; 367(3): 528-542, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30291174

RESUMO

Areas of selective neuronal loss (SNL) represent the first morphologic signs of damage in the penumbra region and are considered putative targets for ischemic stroke therapy. We performed a novel assessment of measuring the effects of the anti-inflammatory agent celecoxib by analyzing simultaneously the different neural populations (neurons, astrocytes, and microglia cells) in SNL and non-SNL areas. Rats were subjected to 1 hour of middle cerebral artery occlusion (MCAO) and treated with celecoxib 1 and 24 hours after ischemia. Infarct volume measurements and triple immunostaining of neurons (neuronal nuclear antigen), microglia (ionized calcium-binding adaptor molecule 1), and astroglia were performed after 12 and 48 hours of reperfusion. Motor response was tested by standard behavioral assays at 3, 12, 24, and 48 hours. Confocal analysis revealed that the percentage of SNL areas, microglia densities, and glial activation increased at 48 hours of reperfusion. Celecoxib treatment improved the neurologic deficit, reduced the infarct volume by 50% after 48 hours of reperfusion, and resulted in a reduced percentage of SNL areas and microglia and astroglia reactivity after 48 hours of reperfusion. This study proves, for the first time, that celecoxib presents postischemic neuroprotective effects in a transient MCAO model, prevents or delays the presence of SNL areas, and reduces glial activation.


Assuntos
Celecoxib/farmacologia , Infarto da Artéria Cerebral Média/complicações , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico
18.
Biochem Pharmacol ; 151: 26-37, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29499167

RESUMO

BACKGROUND: Blood reperfusion of the ischemic tissue after stroke promotes increases in the inflammatory response as well as accumulation of unfolded/misfolded proteins in the cell, leading to endoplasmic reticulum (ER) stress. Both Inflammation and ER stress are critical processes in the delayed death of the cells damaged after ischemia. The aim of this study is to check the putative synergic neuroprotective effect by combining anti-inflammatory and anti-ER stress agents after ischemia. METHODS: The study was performed on a two-vessel occlusion global cerebral ischemia model. Animals were treated with salubrinal one hour after ischemia and with robenacoxib at 8 h and 32 h after ischemia. Parameters related to the integrity of the blood-brain barrier (BBB), such as matrix metalloproteinase 9 and different cell adhesion molecules (CAMs), were analyzed by qPCR at 24 h and 48 h after ischemia. Microglia and cell components of the neurovascular unit, including neurons, endothelial cells and astrocytes, were analyzed by immunofluorescence after 48 h and seven days of reperfusion. RESULTS: Pharmacologic control of ER stress by salubrinal treatment after ischemia, revealed a neuroprotective effect over neurons that reduces the transcription of molecules involved in the impairment of the BBB. Robenacoxib treatment stepped neuronal demise forward, revealing a detrimental effect of this anti-inflammatory agent. Combined treatment with robenacoxib and salubrinal after ischemia prevented neuronal loss and changes in components of the neurovascular unit and microglia observed when animals were treated only with robenacoxib. CONCLUSION: Combined treatment with anti-ER stress and anti-inflammatory agents is able to provide enhanced neuroprotective effects reducing glial activation, which opens new avenues in therapies against stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Cinamatos/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Difenilamina/análogos & derivados , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fenilacetatos/uso terapêutico , Tioureia/análogos & derivados , Animais , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/imunologia , Cinamatos/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Difenilamina/administração & dosagem , Difenilamina/uso terapêutico , Esquema de Medicação , Quimioterapia Combinada , Inflamação , Masculino , Fármacos Neuroprotetores/administração & dosagem , Fenilacetatos/administração & dosagem , Ratos Sprague-Dawley , Tioureia/administração & dosagem , Tioureia/uso terapêutico
20.
J Neurochem ; 138(2): 295-306, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27123756

RESUMO

This study describes the neuroprotective effect of treatment with salubrinal 1 and 24 h following 15 min of ischemia in a two-vessel occlusion model of global cerebral ischemia. The purpose of this study was to determine if salubrinal, an enhancer of the unfolded protein response, reduces the neural damage modulating the inflammatory response. The study was performed in CA1 and CA3 hippocampal areas as well as in the cerebral cortex whose different vulnerability to ischemic damage is widely described. Characterization of proteins was made by western blot, immunofluorescence, and ELISA, whereas mRNA levels were measured by Quantitative PCR. The salubrinal treatment decreased the cell demise in CA1 at 7 days as well as the levels of matrix metalloprotease 9 (MMP-9) in CA1 and cerebral cortex at 48 h and ICAM-1 and VCAM-1 cell adhesion molecules. However, increases in tumor necrosis factor α and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inflammatory markers were observed at 24 h. Glial fibrillary acidic protein levels were not modified by salubrinal treatment in CA1 and cerebral cortex. We describe a neuroprotective effect of the post-ischemic treatment with salubrinal, measured as a decrease both in CA1 cell demise and in the blood-brain barrier impairment. We hypothesize that the ability of salubrinal to counteract the CA1 cell demise is because of a reduced ability of this structure to elicit unfolded protein response which would account for its greater ischemic vulnerability. Data of both treated and non-treated animals suggest that the neurovascular unit present a structure-dependent response to ischemia and a different course time for CA1/cerebral cortex compared with CA3. Finally, our study reveals a high responsiveness of endothelial cells to salubrinal in contrast to the limited responsiveness of astrocytes. The alleviation of ER stress by enhancing UPR with salubrinal treatment reduces the ischemic damage. This effect varies across the different neurovascular unit cell types. The salubrinal neuroprotective effect on CA1 supports differences in neurovascular unit for different brain regions and involves the inflammatory response and its time course. Thus, UPR modulation could be a therapeutic target in cerebral ischemia.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Astrócitos/metabolismo , Isquemia Encefálica/patologia , Infarto Cerebral/metabolismo , Infarto Cerebral/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Masculino , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...